【ナカノヒトTalk #004:アナリスト中川友喜】Kaggle初挑戦で金メダル! 常に付加価値を高める意識作りの秘訣

DeNAのゲーム開発の現場には、どんな人が働いていて、どのような思いを持って仕事に取り組んでいるのかーー「ナカノヒトTalk」は、社内のさまざまな職種の人へのインタビューを通して「人となり」をお伝えする特集です。

今回の「ナカノヒトTalk #004」では、分析部でマネージャーを務めるアナリストの中川友喜に、社内で驚きの声も多かったKaggle初挑戦でのメダル獲得に関して、話を伺いました。

最近では新設されたユーザーインテリジェンス部の業務も兼任し、今年3月には待望のお子さんも誕生。公私共に忙しいながらも充実した毎日を過ごしている、彼の人となりをのぞいてみましょう。

分析部マネージャーと
ユーザーインテリジェンス部を兼務

――お忙しい中ですが、本日はよろしくお願いします!まずはじめに、最近のお仕事について教えてください。

これまで担当してきた分析部でのマネージャー業務に加えて、4月からは新設されたユーザーインテリジェンス部で、さらに幅広く分析の仕事を兼務するようになりました。

もちろん、引き続き分析部のマネージャーとしても、組織の課題解決やメンバーのサポートを担当しています。

――ユーザーインテリジェンス部では何を?

新規開発中のゲームタイトルに対して、投資承認の場で関係者が皆納得した上で、よりよい意思決定を行うための支援をすることをミッションとしています。経営の意思決定に直結する業務が多く、単純に分析力だけではなく、より良い意思決定を行うにあたって、理想的なプロセスとはどういうものであるかなど、深く考えることが必要になっています。

ヒットの確率を1%でも高く!ゲームの“面白さ”を科学する、DeNAの新たな挑戦【ユーザーインテリジェンス部 小東祥】

――兼務で大変だと思いますが、中川さんが仕事を進める上で、大切にしていることはなんですか?

自分が関わっている業務の中で、いかに付加価値を高めるか、ということを意識しています。組織としての成長だけでなく、個々の仕事に対しても、少しずつでもレベルを上げていくために、小さなチャレンジを重ねています。

Kaggle初挑戦で金メダルを獲得

――それでは本題です! 今年の3月にKaggle初挑戦で金メダル(9th place)を獲得したことについて、苦労した部分や気づいた部分を教えてください。

自分が初挑戦したKaggleのコンペは、いわゆる電線と呼ばれる「架空線」に取り付けられたセンサーの信号データから、異常を検知する仕組みを作って、その精度を競う内容です。

このコンペには、全世界で約1,500人ほどの参加があり、自分はチームではなくソロ(1人)で挑戦して、その中で9位を獲得しました。

今回の挑戦は、まったくの未経験からのスタートだったため、まずはKernelsやDiscussionなどに公開されている他の参加者の解法やソリューション、議論を参考にしました。

また、コンペのお題に似ている「信号から異常を検知する」トピックや、それに関連する論文に目を通し、ネットや本で情報を得ながら、ひたすら試行錯誤を繰り返したことを覚えています。

――かなり勉強されていたのでしょうか?

DeNAでは、業務時間中にkaggleに時間を使える制度(kaggleランク制度)があるのですが、対象はいわゆるkagglerと呼ばれるAIシステム部のデータサイエンスチーム(※1)になります。

※1……【データサイエンスの競技者”Kaggler”が活躍する職場】社内での立ち回りやエンジニアやアナリストとの関わり方、今後のビジョンが語られた

自分はその対象外なので、業務外のプライベートな時間を使ってコンペにチャレンジしたんですが、その費やした時間が、トップランクのKagglerと同じくらいと、周りにツッコまれてしまいました(笑)。

――相当な労力をかけてメダルを獲得したということですね。そういえば、中川さんって8ヶ国語を操ると聞いたんですが……。

学生時代に必要にかられて勉強していただけですよ(笑)。普段は日本語で、Kaggleの勉強のときは英語を使っています。

――金メダルを獲得してから、その後の周囲の反応はどうですか?

獲得したばかりのときは、社内だけでなくSNSでつながっているKaggleコミュニティの人たちから、お祝いの言葉をたくさんいただきました。社内では「突然現れた新人がメダルを獲ったぞ!」とザワついていたようです(笑)。

獲得してから以降も、自然言語処理(NLP)や音声認識、画像認識など、引き続き複数のコンペに参加して、メダルを複数獲得することができました。

――現在では、どのくらいKaggleに時間を費やしていますか?

これまでは、家に帰ってKaggleをやって寝る、休日もほとんどKaggleをするような生活だったのですが、子供が生まれたことと、担当する業務量も増えてきているので、最近はなかなか時間を使えていませんね……(泣)。

――社内のKagglerたちとも仲良くなり、Meetupにも参加しているとお聞きしましたが。

以前DeNAで開催した「Data Analyst Meetup」に参加しないか、と声をかけていただき、一緒にパネルディスカッションをさせてもらいました。

おかげさまで社外のアナリストとも交流することができ、仕事内容や課題、チャレンジしていることを共有することができました。

――当時、Kaggleに挑戦しようと思ったきっかけは?

社内では2018年にKaggle制度が導入されましたが、当時はKaggleの存在は知っていたけれど、あまり興味はなかったんです。

そんな中、分析部内でもスキル向上のためにKaggleを始める人が増え、今後さらにバリューを発揮するために、積極的に挑戦していく動きになっていきました。

自分はマネージャーとして、必要な知識として習得しておかなければいけないと考え、スタートしたのがきっかけですね。気付いたら思っていたよりハマってますが……(笑)。

――ちなみに、Kaggleをはじめて自分の中で変わったなと思うことはありますか?

これまでは、Kaggleで扱うデータサイエンスの問題に対しての知識・知見がほとんどなかったので、ノウハウを蓄積できましたし、Kaggleに関連した新しい人脈も作ることができました。

もちろん、成績ではまだまだトッププレイヤーの足元には及びませんが、Kaggleで習得した解法を仕事に生かすことができたり、課題の整理や、これまで解決できなかった難題を解けるようになったことは嬉しい限りですね。

――今後チャレンジしていきたいこと、考える将来像などを教えてください。

これまでも分析部は組織として事業の課題解決に貢献してきたと思っていますが、今後はさらに分析を通じて解決できる課題の領域やレベルを拡大していきたいと考えています。

そのために、部として最重要視している「ビジネスに貢献する」という価値観を守りつつ、広く深く分析技術を習得した上で、これまでうまくアプローチできていなかった課題解決にも取り組んでいきたいと考えています。

またDeNAの分析部を、取り組んでいる分析の技術レベルが高いというだけでなく、そういったハイレベルな分析を当たり前のように事業の意思決定やサービスの改善に還元できている世界を作り、社内外に誇れるような組織(※2)にしたいと考えています。

※2……【DeNA分析部特集Vol.5(前編)】未来を予測し、最適解を導き出し続ける組織 〜分析の高度化に向けた次のチャレンジとは〜

子供が生まれて生活にも変化が

――ちょっとプライベートなお話をさせてください。待望のお子さんが生まれたと聞きましたが?

そうなんです!今年の3月に子供が生まれて、だいぶ生活が変わりました。昼間は妻が子育てをしてくれていて、休日は2人で協力して子育てを頑張っています。

分析部では去年がベビーラッシュで、パパママ社員が増えました。子供が生まれる前は「プライベートと仕事」のバランスを重視し、働きやすい環境を作ることは大事だと、頭では理解していたんですが、実際に自分の子供が生まれたら、より実感がわきましたね。

――小さい子供を持つ社員が多いチーム内で、残業を減らすことに対して何か工夫をしていますか?

去年マネージャーに就任したときから、メンバー全員で業務の効率化や残業時間を減らす取り組みは続けていて、グループとしてかなり改善してきたな、と思っています。

開発・運用タイトル数の増加に合わせて、工数も増えていくので、削減の仕組みやアサインの調整など、効率化を考えて全体で取り組んでいます。

――ちなみに、お子さんをアナリストやKagglerにしたいと思いますか?(笑)。

今は特に考えてないですね(笑)。本人がやりたくて、のめりこめることができればいいな、と考えています。メンバーに対しても「これをやりなさい」という強制はしないですし、得意なこと、仕事としてやるべきことを自分で判断し、そこに全力でコミットして欲しい、というスタンスです。

――今日はありがとうございました。

インタビュー・執筆:細谷亮介
編集・撮影:佐藤剛史

[su_note note_color=”#ffffff” radius=”10″]

GeNOM(ゲノム)とは

DeNAのゲームクリエイターを様々な切り口で紹介するメディア(運営:株式会社ディー・エヌ・エー)です。ゲーム開発の現場で生まれる様々なエピソードや、クリエイター紹介、イベント紹介などを通して、DeNAで働くメンバーの”ありのまま”をお伝えしていきます。

GeNOMの最新情報は、公式Twitterアカウントにて確認いただけます。ぜひフォローをお願いします!

[/su_note]

【DeNA分析部特集Vol.4】Kaggleトッププレイヤー陣と事業課題の解決に奔走するMLアナリスト―信頼関係が生み出す強固な連携とは

DeNAが運営するゲームはプロデューサーやディレクター、プランナーなど様々な職種によって支えられていますが、分析の役割もゲームの開発・運営にとって重要な存在と言えます。

今回は、分析部のMLアナリスト山川要一と、自身もKagglerであり、データサイエンスグループでKaggler陣をまとめる原田慧を迎え、彼らの密接な連携手法にスポットを当てたインタビューを実施しました。

Kagglerと目指すミッションは”分析の高度化

――はじめに、お二人の経歴を教えてください。

原田慧(以下、原田):私は大学院で数理学の博士号を取得したのち、金融機関向けのデータ分析を行う会社に入社しました。そこでは機械学習を活用した金融機関の支援をするデータ分析などを担当し、そこで7年近く勤めた後、2018年2月にDeNAに転職しました。

DeNAでは、オートモーティブ関連事業に関わる分析を主に担当し、2018年8月からマネージャーとして、オートモーティブ以外のプロジェクトにも横断的に加わっています。

山川要一(以下、山川):僕は企画者としてDeNAに入社して、1年目はアプリの企画や分析を担当していました。2年目からは分析部に異動して、ゲーム領域において分析業務を本格的に行っています。

実際の業務としては、いわゆるアナリスト的な役割でKPIを集計し、より難易度の高い課題に対してゲームタイトルの各プロデューサーと一緒に取り組んでいます。上流の課題を見ていく中で、これまでのKPI集計で終わるのではなく、もっとプレイヤーに寄り添った分析をすると、何が実現できるかを日頃から考えています。

そして原田さんが率いるKagglerの方々と一緒に、分析のさらなる高度化を目指して、新たな分析手法の開発や、そもそも分析組織のあるべき姿を定義するような仕事をしています。

――分析部のMLアナリストのミッションは具体的にどういったものでしょうか?

山川:ミッションについては先程もお伝えしたように、「分析の高度化」です。DeNAでは従来の分析基盤が整っており、例えばプレイヤー数の推移など、多彩なデータをクロス集計レベルで分析できる環境があります。

ただ、これまでの分析結果だけではわからないような、プレイヤーの趣向性や行動予測にもっと取り組めないかと考えていて、新しいデータサイエンスを取り入れた分析手法にも取り組んでいます。

――一方、原田さんはKagglerをまとめている立場ということですが、現在DeNAにはKagglerは何名在籍しているんですか?

原田:当初は私も含めて3名からのスタートでしたが、今は社員が10名、アルバイトで3名が所属(※2019年2月時点)しています。

【データサイエンスの競技者”Kaggler”が活躍する職場】社内での立ち回りやエンジニアやアナリストとの関わり方、今後のビジョンが語られた
https://genom.dena.com/event/techcon2019_kaggler/

――日々KaggleをやっているKagglerの皆さんですが、ゲームをプレイすることはあるんですか?

原田:Kaggle自体が、ネットゲームをプレイする感覚に近いんです。ユーザーランキングや、ゲーム内イベントの仕組みもKaggleに近い要素があるので、大学生の頃ゲームにすごくハマっていたメンバーは多いです。特にKaggleに熱狂的な人は、かなりの『逆転オセロニア』好きなので、メンバーの多くはダイヤモンドクラスに到達しています(笑)。

密接な連携による、効率的な課題の解決

――山川さんと原田さんはお互いの部署間で仕事を進める際、どのような連携を取っているのでしょうか?

原田:2人で毎週定例MTGを設け、山川さんが集めてきてくれたゲーム事業部および分析部が抱えている課題に対して1つずつチェックし、データ分析で解決できそうだと判断したら、担当Kagglerをアサインして実際に動き出していきます。

山川:MTG時には、事業部側ではどんな動きがあるのか、できるだけ細かく原田さんに共有するようにしています。

横断組織であるKagglerのチームは、各事業部が持つ課題がどうしても見えにくくなります。逆に、私たち分析部は日々事業部の中でチームと一緒に動いているので、各タイトルが実際にどういう課題を持っているのかを吸い上げることができます。

そのように表面化した課題について、原田さんと一緒にまずディスカッションしていく流れになっています。

原田:私たちはその課題に合わせた手法や解法、データ分析で解決できるのか、より簡単な分析を粘り強く続けて解決するのかなどを判断しつつ、今後の進行方向を決めていきます。

それからもう1つ、分析部の中で「データ分析技術強化」という取り組みがあり、そこに私を含めたKagglerのメンバーが2名参加しています。この取り組みは、データ分析技術の基本的を学ぶOJTのような役割を持っており、勉強も兼ねながら、案件を一緒に進めることにもトライしています。

――DeNAの各タイトルにはそれぞれアナリストが担当していると思いますが、山川さんが事業部内の課題を集める際、ヒアリングするのは各アナリストなのか、それともプロデューサーなのでしょうか?

山川:一番多いケースはアナリストですね。ただ状況によってはプロデューサーから直接聞くこともありますよ。『逆転オセロニア』なら、担当アナリストである松﨑さんやけいじぇいプロデューサーから、タイトル運営の課題をヒアリングしています。

【DeNA分析部特集Vol.1】3周年を迎えた『逆転オセロニア』を支え続けるDeNAゲーム分析の強さとアナリストに求められる役割とは?
https://genom.dena.com/develop/analyst/

――そうして吸い上げた課題に対して、自分自身でできる、できないを判断して、難しいものを原田さんに持っていくと。

山川:いえ、基本的にデータサイエンスに関わるものはすべて原田さんと一緒に見ています。僕自身が適切な判断ができない場合もあるので、リスクを回避する意味でも、原田さんに確認してもらうのが一番確実だと考えています。

――山川さんが原田さんに各タイトルの課題を吸い上げて持っていくときは、どのように持っていくんですか。

山川:まず「長期滞在者を短期行動から分類したい」「デッキ編成の最適化を考えたい」といった大枠の目的が決まっている課題を持っていきます。それを原田さんが裏を読み、もう少し深く細分化して、分析の可能・不可能の提案をしてくれます。

原田:案件によっては、最初から一緒に取り組む場合もあります。問題解決の基本は、1つの難しい問題を分解するところにあると思うんですが、それにはドメイン知識も必要なんです。山川さんのような、その能力に優れたアナリストがいてくれると、判断作業がとてもスムーズに進みます。

山川:課題の解決方法について、例えば難易度レベル10の事業課題があるとします。それを機械学習でいきなり最初から全工数を投入して挑むのは、他の進行中の課題との兼ね合いや、経営判断的にもなかなか難しいと思われます。

そこで、アナリスト側で難易度レベル10の問題を、「難易度レベル1×5タスク」「難易度レベル2×1タスク」「難易度レベル3×1タスク」といった形に分解してみます。

このようにステップを踏んで解決していけば、最終的には難易度レベル10の案件をクリアできますよね。このような的確なブレイクダウンなら、難易度レベルに応じたタスクを判断しやすく、可能・不可能の見極めも素早くできるメリットが生まれます。

原田:Kagglerは小さなタスクなら、わずか1日で終わらせることもできるので、分解する意義は大きいと思います。逆に分解してみて、ものすごく手強い問題だと分かれば、元の大きい問題の解法の方針を少し変更したり、ブレイクダウンの方向性や、そもそもの問題設定を見直す必要があることを、事業側と交渉する選択肢を生むことなども可能です。

――ちなみに運営する各タイトルごとに見ている分析は違うのですか?

原田:はい、違います。ですが、ゲームシステムに”デッキを組む”ような共通要素を持つタイトルでは、目的が似通っている部分もあります。プレイヤーにどうやって楽しんでもらうか、継続的にプレイしてもらうにはどうすればよいのか、といった課題感については、タイトルごとであまり変わらないかも知れませんね。

山川:クリアしやすいデッキの組み方など、すべてのプレイヤーが自力でベストな組み合わせを見つけられるわけではありません。そこで、組み合わせを分析し、ゲーム内の施策を考えれば、オススメ編成のような仕組みを入れるなどの検討も可能になります。

このように、ゲーム内でプレイヤーが快適に過ごすためのサポートを担う分析は、とても汎用的で、ニーズも高いんです。

――なるほど。では、実際に現場からはどんな課題が上がってきて、どう進めようとしているかという具体例があれば。

山川:ゲームを遊びたいと考えている方は、さまざまな広告チャネルをきっかけに、好きなゲームをダウンロードしてプレイを開始することが多いと思います。そこで、どんなプレイヤーがどこでゲームを知り、どれくらい継続的に楽しんでいるかを把握することで、広告の投資効果の検証をしていきたいという要望が求められています。

それを目的とした分析結果は、どのSNS広告が効果的なのかを決める際に役立ちます。プレイヤーの180日後の行動はその日には計測できませんが、1週間や1ヵ月など、中長期的に予測できるようになれば、ある程度の傾向を知ることが可能です。

1週間のデータを使って得た指標をもとにすれば、広告の出稿方法を変えるなどの投資判断に使えると考え、プレイヤーの行動を予測する取り組みに挑戦しています。

原田:このような”予測”というキーワードが出てくると、Kagglerは活躍しやすいです。そもそもKaggleで日々やっているのは、「今までのデータを与えるから、未来の何かを予測しなさい」といった予測の問題なんです。

無論、未来予測ではない問題もKaggleにはありますが、基本形は与えられたデータから道の何かを予測するというものになります。

――DeNAでKaggler枠が出来て、実際にKaggleメンバーが集まってきました。山川さんの立場として仕事をする上でどのような点がメリットだと感じていますか。

山川:やはり、分析者からのアウトプット品質が、段階的に上がったと感じています。KagglerがDeNAに集まったことによって、今までできなかった取り組みを実現できるようになってきたことを実感しています。

特に、プレイヤー数の予測精度が上がったり、今まではわからなかったプレイヤーの特性が見えたことは大きなメリットです。Kagglerが参加したことで分析結果がレベルアップして、施策にうまく活かすことが可能になり、プレイヤーニーズに応えられるサービスを作れるようになってきたのは、組織としては大きな前進です。

――お二人はお互いをどういう存在だと感じていますか。

原田:私から見ると、山川さんはとても頼りになる人です。何か問題が起きても、とりあえず山川さんがどうにかしてくれると……(笑)。

山川:僕も原田さんは神様のように、頼りにしています(笑)。僕はアナリスト側、原田さんはKaggler側で自分の役割を持ちつつ、お互いに信頼し合えて良い形で連携できていると感じています。一緒に働く中で、長所を引き出し合っている気がしますね。

また、原田さんは良い意味で介入しないで任せてくれますし、こちらが悩んでいることも親身に相談に乗ってくれます。お互いのプロフェッショナルな部分を尊重しつつ、違う部分も受け入れつつ、協力できているのはとてもありがたいなと思います。

MLアナリストに求められるスキルや経験

――Kagglerと事業部のハブのような役割を担う山川さんのポジションには、どのようなスキルや経験が求められるのでしょうか。

山川:主に3つ挙げられます。1つは事業責任者視点で、これが一番重要ですね。細かなタスクはいくらでも作ることはできますが、それを解くことに意味があるのか、そもそも何が最優先で最重要な問題なのか、課題に対する優先順位を付ける視点が必要になります。

2つ目に問題設定です。事業として設定した目標や理想が達成できればOKなのか、収益など他の要素も複合的にチェックしなければならないのかなど、問題の本質を見誤ることなく、事業で最も大事にすべきことの定義ができることです。

3つ目は、Kagglerの方と対話をする上でのデータサイエンスの知識です。Kaggleに関してMasterまで到達せずとも、いくらかは勉強して欲しいですね。手法の選択や解決方法を日頃から考えたり、意欲的にサービス改善のために何ができるか、アイデアを膨らませることが大事だと思います。

原田:もちろん、Kaggler側の努力でいくらか改善できる部分もあります。我々Kagglerも若いメンバーからシニアメンバーが在籍しているので、技術面の足りないところはフォローができますし、「これってどういう意味があるの?」といったざっくりとした観点でも一緒に考えることができます。

――今後の話になりますが将来のビジョンや目標などがあれば教えてください。

山川:視野をさらに広げていきたいですね。分析部はゲーム事業に直結している組織なので、アナリストがもう少し幅広い課題まで目が届くようになって、全社レベルのいろいろな課題を引っ張って集約できると良いと考えています。その上で優先順位をつけて原田さんたちKagglerに相談できれば、全社的にも常に高いバリューを出せるんじゃないかと思っています。

――最後に、アナリストとKagglerが連携して新しいことに挑戦し続けるDeNAという会社はどういうところが魅力でしょうか?

原田:さまざまな事業を複合的に推進している、おもしろい会社だという印象は入社前から変わっていません。実際に入社して魅力的だと思ったのは、データ分析に関してほとんどの人が前向きだということですね。

DeNAはデータ分析に対する基盤がしっかり構築されていて、当たり前にデータを集めています。データを分析すれば必ず何か良いことがあるはず、ということに対して疑っている人がいないんです。Kagglerにとっては、とても働きやすい環境だと言えますね。

山川:「あなたはこの役割だからこれだけやっていればいい」というような、決まったラベルを貼らない風潮も魅力かも知れません。

僕は分析担当ですが、いろいろな事業に関わらせてもらっていて、新規事業責任者の相談相手になることもありました。誰が何をやっても、それが意味のあることなら実行する、という風土を持った会社なので、責任も大きいですが、強いやりがいも感じられます。

さらに自分の専門領域ではない部分にもチャレンジできますし、それを否定する人がいないのも嬉しいです。DeNAでは「こっちの事業に口を出してくるんじゃない」と言われることはまずありませんよ。

※本記事は2019年2月時点の情報です。
※本記事は、SocialGameinfoに掲載された内容を一部構成を変更して掲載しています。

[su_note note_color=”#ffffff” radius=”10″]

GeNOM(ゲノム)とは

DeNAのゲームクリエイターを様々な切り口で紹介するメディア(運営:株式会社ディー・エヌ・エー)です。ゲーム開発の現場で生まれる様々なエピソードや、クリエイター紹介、イベント紹介などを通して、DeNAで働くメンバーの”ありのまま”をお伝えしていきます。

GeNOMの最新情報は、公式Twitterアカウントやにて確認いただけます。ぜひフォローをお願いします!

[/su_note]

【データサイエンスの競技者”Kaggler”が活躍する職場】社内での立ち回りやエンジニアやアナリストとの関わり方、今後のビジョンが語られた

2019年2月6日、渋谷ヒカリエにて技術者向けの大規模イベント「DeNA Technology Conference 2019」が開催されました。

本記事では、DeNAゲームサービス事業部の分析部に所属する山川要一も参加した、「パネルディスカッション:データサイエンスの競技者、Kagglerたちが活躍する職場とは」と題したセッションをレポートします。

※記事の最後にはセッション時に投影した資料を掲載していますので、そちらもご覧ください。

Kaggle、そしてDeNAのKagglerとは?

「データサイエンスの競技者、Kagglerたちが活躍する職場とは」と題した本パネルディスカッション。

登壇者は、データサイエンスグループのマネージャーとしてKaggler達を率いる原田慧、データサイエンス競技「Kaggle」のトッププレイヤーで構成されるAIシステム部のデータサイエンスグループでKagglerとして活躍する加納龍一と小野寺和樹。

さらに、システム本部AIシステム部のMLエンジニアとして鈴木翔太、ゲームエンターテインメント事業本部に属する分析部のメンバーとして山川要一が別の立場から、一緒に働くKagglerについて紹介するため本セッションに参加した。

左から原田、鈴木、加納、小野寺、山川
今回、ホワイトボードでパネルディスカッションの模様がリアルタイムで描かれていた

本題に入る前に、モデレーターを務める原田がKaggleの概要を紹介。Kaggleは機械学習モデルを構築するコンペティションのプラットフォームで、スポンサーが出したデータと問題に世界中のKagglerたちが挑み、提出した予測結果の良し悪しで順位付けされる。上位者には賞金が出たり、Kaggle上でメダルが付与され、メダルが貯まるとKaggleでのランクが上がり、MasterやGrandmasterといった称号が与えられるとのこと。

原田によれば、Grandmasterは世界でおよそ100名しかおらず、国内でも5人程度だという。また、Masterについては国内に約40名おり、その内の10名がアルバイトも含めるとDeNAに所属。原田自身もKaggleMasterだそうだ。

DeNAでも2018年4月からAI技術開発の横断部門であるAIシステム部のデータサイエンスグループにおいて、Kaggle社内ランク制度(データサイエンスチームのメンバーに対して、業務時間を使ったKaggleへの参加を認める)を導入していることにも触れ、同社のKaggleである小野寺と加納を含むチームが、昨年8月に行われた過去最大規模のKaggleコンペで第2位に入る実績を残した。

Kagglerの一人である加納は、次世代タクシー配車アプリ「MOV」の中の機械学習の応用をメイン業務としてアサインされながら、「残った業務時間をKaggleに費やしています」(加納)と、社内Kaggle制度の実例を紹介した。

DeNAのKagglerである加納(左)と小野寺(右)

また原田は「MOVやオートモーティブなどの大きな案件に関わることもあれば、Kagglerが中心となって案件を達成することもある」とし、先日発表されたDeNAと関西電力による石炭火力発電所のスケジューリングを効率化するというプロジェクトでも、中心となったKagglerが3名いることを明かした。

実際、Kaggle上でこれら案件のような問題が出ることはないそうだが、Kaggleの中で日々勉強をしているため、その応用として変わった仕事であっても対応は可能だという。

このようにKagglerにより回っていくプロジェクトもあれば、「DeNAはAIを使って色々な事業を立ち上げていこうという会社」と原田。全社的にAI技術を使ってサービスを良くしていくことが根幹にあるとし、その中でKagglerに期待される役割について説明した。

Kagglerは、システム本部AIシステム部内の、AI研究開発エンジニア、MLエンジニア、データサイエンティストという3タイプのメンバーの中の、データサイエンティストに分類される。データサイエンティストは、Kaggleで様々な事をやっているので引き出しが豊富で、色々な経験も持っておりスピードが速い。

これはサービスや事業、使う技術に強いこだわりがあるわけではなく、データがあって課題があれば何でもやろうというスタンスとのこと。

データサイエンティスト協会の”データサイエンティストに求められるスキルセット”の図を例に、Kagglerはデータサイエンス領域の中のさらに特殊なところに属すると原田

Kagglerはどのように仕事をしているのか?

ここから本題のパネルディスカッションがスタート。DeNAには様々な職種のメンバーが仕事をしているが、実際どのようにKagglerと仕事をしているのか?

「基本的にはアナリストと事業部とKagglerは三者三様の形で働いています」とは山川。アナリストの立場としては、Kagglerはデータサイエンスに特化しており、一方で事業部は常にビジネス課題で頭を悩ませている。

どうすればビジネス課題を、データサイエンスの問題に落とし込めるかというところでアナリストが間に入ってデスカッションして、問題設定をしているという。

事業部とアナリストで”こういう課題を解いていきたい”という戦略を固めつつ、「どうやって解いていくかをアナリストがKagglerでディスカッションし、モデルを作って製品として出すこともあれば運用に必要な基盤みたいなものを作ってもらうことがある」(山川)そうだ。

その意見を聞いて、「すごく難しいことがある」と原田。事業が抱える課題をどんなデータサイエンスの問題に落とし込むかは簡単ではないという。データサイエンスの問題の形、それこそKaggleで出題されるような問題の形で事業部が用意することはあまり期待できないという。

その問題に対して山川は「そもそも何がしたいのか、常に自分が事業責任者だという気持ちで実際の事業責任者やプロデューサーとディスカッションをして問題を作る」などの工夫をしているそうで「最初にこういう問題を解きたい、これくらいの精度の向上、利益率の向上を目指しているといった指標を事前にすり合わせて進めるようにしている」とした。

逆にKagglerから見て、実際に事業部の抱える問題がKaggleの問題と同じようにおもしろいかという問いに「Kaggleの問題の方がおもしろい」と小野寺。

補足する形で原田も「もちろん例えばKaggleって3ヵ月間でがんばって結果を出すということがあるんですが、Kaggleの上位層が競っているのは0.000いくつの世界の話で、そこまで事業部の方が興味があるのかというとそうではなく、大抵の場合当たり前のこと」と説明。

「もちろん我々としては大きな予算が動いている中で、ちょっとでも効率化して売上に貢献できるような仕事もやりたいですが、小さい分析となるとどうしても事業にあったものをKagglerがパッと作る形で力を発揮することがあります」(原田)と続けた。

また、最近ではKaggleのクローンを作成し、Kaggleの問題を解いているかのように仕事ができる地盤を整えているという。

山川も「アナリストもKagglerと同じレベル、とまではいかないまでも、自分でもある程度実装してこれくらいのベースラインのモデルになるだろうとか、どれくらいの精度だったら見込めるだろうという肌感を知っておきたい」とし、事業部で設定した問題を触れる環境として、自身でベンチマークモデルを作って検証するなどしているそうだ。

一方、鈴木はエンジニアとしてどのようにKagglerと仕事しているのか。現状は、「Kaggler数名と一緒にオートモーティブ系のプロジェクトに入り、彼らの実験や学習をする環境作りや必要なデータの収集、Kagglerが作ったモデルを本番にどう組み込んで配信するか」(鈴木)など、モデル作り以外の様々なところのエンジニアリングを幅広くやっているという。

また、Kagglerと仕事する上で苦労することはないのかとの原田に問いに鈴木は、「エンジニアスキルが人によってまちまちなところがあり、エンジニアなら普段から使っているであろうものでも教えてあげたりサポートする必要がある」と語った。

逆に、Kaggler陣は、アナリストやエンジニアとどう接しているのか?

「普段はアナリストやMLエンジニアと仕事する」と加納。半年前にDeNAに転職してきたという自身の経歴に触れ、「それまではずっと研究していましたが、会社に入って周りの方々が色々教えてくれます。それがなければやっていけなかったと思います。MLエンジニアリングやアナリティクスなど、その強い専門性を持った方々が周りにいるので、自分たちも吸収できるし、Kagglerとして今までない環境、良い職場だなと感じています」と話した。

また、「結構1人で完結する仕事が多い」という小野寺のような働き方もあるようで、「1人でということであればそういうパターンもあります。加納さんが色々な方と仕事できると言っていましたが、これはDeNAの仕事の仕方の1つの魅力」と原田。

1人で何でもできることもすばらしいが、これなら世界の誰にも負けないという気概を持ったメンバーが集まっているのがデータサイエンスグループであり、「DeNAが全社的にサービス実現に向け全員で一丸となって取り組むという考え方の元、色々なメンバーが色々な苦労をしながら成り立っている」(原田)とした。

Kagglerの存在によってDeNAはどう変わったのか?

DeNAでKaggler枠が正式に組織されたのは2018年2月。そこからこの1年で多くのKagglerがやってきたが、これによってDeNAとしてどのような変化が生まれたのか?

「今まではデータはあってもどうやって使えばいいかとか、こういうことできたらもっと意思決定に役立つのに、というビジネス側で議論することがありました。それがKagglerの技術的なサポートを受けることで、より高度な問題解決ができるようになり、より効率的に運営に負担をかけない運用方法や、ここは気を付けようという発見がノウハウとして貯まってきた」と、山川はできることが広がったという印象のようだ。

それを聞いた原田から、「Kagglerはモデルの精度を高めるのが本職。簡単なモデルを作るだけなら山川さんでもできると思います。その状況の中で、最低限の分析をする上で間に合っていた中で、Kagglerがやってきたことでの価値」という質問が。

山川は「プレイヤーにどれくらい継続的にプレイしてもらえるのかを予測するのは、ゲームを運用する上でとても大事なこと。小野寺さんに作っていただいた予測モデルで、この精度がかなりあがりました。それが会社としても、意思決定する上で定量的にわかるようになったのは大きな意味があります」とし、そういう部分でKagglerのバリューがとくに大きかったとコメントした。

一方の鈴木は、一度辞めて1年前に再びDeNAに戻ってきたという経歴を持つ。その立場から「昔はデータサイエンスに尖った人材って、社内では少なかったイメージでした。でも戻ってきたらたくさんいた」との印象を述べた。

また、「山川さんと意見が近いですが」と前置きし、「できる仕事の範囲、幅が広がりました。関西電力との案件も、以前はDeNAがやれるとは個人的に思っていなかったので、そういったところでデータサイエンスがアプローチして、色々できるようになったところがおもしろい」(鈴木)と語った。

それに対し、原田は「僕らからすると、おもしろそうな案件があるからやってやろうと思っているだけなので、楽しく過ごしている」とKaggler側の意見を述べた。

では、Kagglerは転職してきたDeNAに対してどういう印象を持っているのか?

昨年6月に転職した加納は、「原田さんは数学、小野寺さんは経済学、僕は天文学と、みんなバックグラウンドが違ってすごく個性的でユニークだと思う」とのこと。また「Kaggleって画像系や言語処理だったり色々やるけど、1人1人得意な手法が全然違って、幅広い能力を持ったメンバーたちが集まっている。みんなが持っている強みを少しずつ幅広く吸収できる」ところがデータサイエンスグループ、そしてDeNAのおもしろさであり魅力と語った。

「私はチームのマネジメントをしていますが、多様なメンバーがいるから大変そうに見えてある意味楽なんです」とは原田。つまり「みんなKagle好きという価値観の元、考え方が全く違うということがない。もちろんどんなスキルがあって、どんな事業が好きという細かい部分の違いはあるけど、我々がチームとしてどうありたいかということに関しては、みんなの意見がブレることはあまりなく、一体感がある」とのこと。

そして小野寺はDeNAについて、「色々な会社を転職してきたが、DeNAは働き方が良い意味で自由」という印象を持っているという。

これについて原田は「裁量労働制がほとんどの社員に適用されていて、10時半には出社しようというルールはあります」と補足。ただし、メンバーの働き方に関しては小野寺に言うようにかなりの自由度を与えているとし、「管理しても仕方がないし、管理コストの問題もあります。各メンバーの専門性だったりプロ意識への信頼」(原田)がDeNAの自由な職場環境に表れていると説明した。

また、Kagglerを束ねる原田は、自身が昨年2月にDeNAに転職した動機について大きく2点あると切り出した。1つは「Kaggler枠という制度におもしろさを感じ、DeNAのKaggleに対する本気度を感じた」(原田)こと。

もう1つは、それまでゲーム会社だと思っていたDeNAが「いざ話を詳しく聞いてみると、色々な事業をやっている。色々な事業をやるという部分が、色々な会社の色々な問題を解決していくKaggleに近いものがあった」(原田)と、同社の多様さに魅力を感じたことが転職の決め手だったと話した。

今後Kagglerはどうなっていくべきか?

DeNAにKaggler達が集い始めてから、ちょうど1年が経ったが、今後Kaggler達はどうなっていくべきか? これが本パネルディスカッションの最後のテーマとなった。

まずKaggler側の意見として、「自分たちは仕事の時間を割いてKaggleをやっていますが、遊びではないという前提の元で、今後もKaggleにチャレンジし続けるということをまず1つ突き詰めていきたい」と加納。Kaggleの勉強をしながらその上で得られるスキルなどを蓄え、自分自身の幅を広げて間接的に会社に貢献することで実績を出していきたいとした。

過去3度、Kaggleのコンペで世界2位に輝いた小野寺は、「Kaggleのコンペで一回くらいは優勝したい。今まで準優勝しかないので世界一になりたい」とその目標を語った。

対して、エンジニアやアナリストがKagglerに今後期待するのはどのようなところなのか?

まず鈴木。「社内でエンジニアとして機械学習に興味を持っているメンバーがたくさんいるので、そういった人たちに教えてもらったり、何らかの機会で社内全体のデータサイエンス力の基礎力を上げる取り組みをしてくれるといいなと思います」と今後のKagglerに期待を寄せた。

また「エンジニア側として取り組んでいきたいこともあります」と鈴木。

「チームで成果を出すというところを意識しているので、Kagglerがもっと高速に分析、実験を行える環境を用意したい。もっと色々なところでモデルがデプロイされて動いていくと思うので、デプロイの仕組みをより効率化して、MLOpsもしっかりやっていきたいと思っています。あと最近の分析環境は大体AWSなどに構築することが多いので、その辺にしっかりキャッチアップして、Kagglerに提示してあげたい」(鈴木)と、自身の今後についても触れた。

山川は「今は全社的にAIが使われていますが、Kagglerがメインで関わっているのはオートモーティブ事業。一方でゲームエンターテインメント事業も解ける問題、解きたい問題がたくさんありますし、ヘルスケアなどその以外の事業もある」と、今後Kagglerにそれらの領域にもどんどん出て行ってほしいとコメント。

そして自身の今後については、「サービスからの課題に対する要求水準がどんどん上がっていく中で、アナリストとして事業部とデータサイエンスグループの間に入り、自分でも事業者視点で問題設定ができて、なおかつどうしたら問題として最適にデータサイエンティストと一緒にやれるかというところを考えられるよう、アナリストとしてもう少し力をつけていきたい」と語った。

最後に原田は、「Kagglerは結局のところ専門性を持った集団。それがどうやったら上手く活きて、どうすれば全社の役に立つのか? 色々な方にお世話になりながら今後も進んでいくのかなと思っています」と本セッションをまとめた。

セッション中、描かれ続けたパネルディスカッションの流れをまとめたパネルも完成した

セッション時の投影資料はこちら

※本記事は2019年2月時点の情報です。
※本記事は、SocialGameinfoに掲載された内容を一部構成を変更して掲載しています。

[su_note note_color=”#ffffff” radius=”10″]

GeNOM(ゲノム)とは

DeNAのゲームクリエイターを様々な切り口で紹介するメディア(運営:株式会社ディー・エヌ・エー)です。ゲーム開発の現場で生まれる様々なエピソードや、クリエイター紹介、イベント紹介などを通して、DeNAで働くメンバーの”ありのまま”をお伝えしていきます。

GeNOMの最新情報は、公式Twitter アカウントにて確認いただけます。ぜひフォローをお願いします!

[/su_note]